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ABSTRACT: In the past few years, de novo molecular design has
increasingly been using generative models from the emergent field
of Deep Learning, proposing novel compounds that are likely to
possess desired properties or activities. De novo molecular design
finds applications in different fields ranging from drug discovery
and materials sciences to biotechnology. A panoply of deep
generative models, including architectures as Recurrent Neural
Networks, Autoencoders, and Generative Adversarial Networks,
can be trained on existing data sets and provide for the generation
of novel compounds. Typically, the new compounds follow the
same underlying statistical distributions of properties exhibited on the training data set Additionally, different optimization strategies,
including transfer learning, Bayesian optimization, reinforcement learning, and conditional generation, can direct the generation
process toward desired aims, regarding their biological activities, synthesis processes or chemical features. Given the recent
emergence of these technologies and their relevance, this work presents a systematic and critical review on deep generative models
and related optimization methods for targeted compound design, and their applications.

KEYWORDS: Deep Learning, De Novo Molecular Design, Architectures, Recurrent Neural Networks, Generative Adversarial Networks,
Autoencoders, Generative Model, Optimization

■ INTRODUCTION

De novo molecular design aims to create new chemical entities
with desired properties and/or activities. These properties may
be easily quantifiable, such as molecular weight, or somewhat
more abstract, as is the case of toxicity. This is an inherently
difficult task owing to the immense search space of around 1033−
1080 feasible molecules fromwhich only a small fraction typically
have the desired traits.1 As such, de novo molecular design was,
for many years, and mostly remains a process of almost exclusive
trial and error, with human expert knowledge and intuition
about chemistry playing a major role.2

Meanwhile, the high costs associated with developing new
molecules, reaching $2.8 billion dollars for a single compound,
have also led to the implementation of computational tools
capable of assisting the process. These have proven valuable and
have found wide usage in practical applications.2,3 A forthright
approach consists in enumerating all possible molecules that
conform to valency rules and do not include chemically unstable
functional groups. A notable example is the Chemical Space
project, where this technique was employed to generate 166
billion molecules.4,5 Another technique, reaction-based de novo
design, uses a set of known chemical reactions to combine
various readily available building blocks into new molecules.
This process can be guided by a similarity criterion to a known
molecule of interest, giving rise to a large number of new similar
molecules while ensuring their synthetic plausibility.5,6

Evolutionary Algorithms (EAs) have also been successfully
applied to de novo molecular design. As a recent example,
AutoGrow47 uses an EA to create new predicted ligands. At each
iteration, new molecules are created using a mutation operator,
that performs an in silico chemical reaction, or a crossover
operator that merges two compounds into a new one by
randomly combining their decorating moieties. Grammatical
Evolution on string representations and evolving molecular
graphs provide alternative approaches that enable EAs to
generate novel compounds targeting desired properties.8,9

Although useful, these methods still leave room for improve-
ment. For instance, enumeration often leads to molecules that
are too difficult to synthesize, and reaction-based design is
fundamentally restricted in its ability to explore the chemical
space, both important aspects of molecular design. EAs, while
computationally efficient and capable of performing on par with
other recent approaches, rely on expertly encoded operations,
possibly limiting the search space and not leveraging the large
amounts of data currently available.10
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More recently, advances in Deep Learning (DL) sparked a
surge of novel approaches to these problems.11 Over the past
decade, DL has proven successful in multiple fields, such as
computer vision, speech recognition, and translation, pushing
the state-of-the-art forward and surpassing other Machine
Learning approaches.12,13 DL refers to the use of artificial neural
networks with multiple hidden layers.12 A common intuition is
that successive layers can learn higher-level abstractions of the
inputs.
Within DL, generative modeling aims at capturing an

underlying data generation process, some unknown probabilistic
distribution from which a data set was sampled, and has been
successfully used for creative tasks, such as writing, composing
music, and painting.14 It usually deals with unlabeled data and
attempts to create a model capable of generating new
observations that closely resemble those from the training data
and not simply producing copies.14

Improving on earlier approaches, which employed more
traditional machine learning methods such as Gaussian Mixture
Models, deep generative models have recently found use in the
generation of novel molecular entities.14−16 Starting around
2017, with works like that of Ǵomez-Bombarelli et al.,10 Yuan et
al.17 and Segler et al.,18 a large number of novel approaches have

been put forward employing various neural network architec-
tures and molecular representations.16,19 Alongside these works,
several reviews have also sought to condense the plethora of
different approaches, shedding light into and discussing the
different architectures, generation of various molecular
representations and use of comparative metrics.16,19−22

Due to the vastness of chemical space and the costs associated
with testing possible compounds, a rational exploration with
regard to the desired properties is preferable. As such, a number
of distinct approaches have been developed for directing and
controlling the generating process of molecules toward
compounds with defined chemical properties or desired
activities.
In this arena, the evolution has been very fast, with novel

methods appearing at an impressive rate. A systematic review of
the main advances of DL in the generation of focused molecules
seems particularly relevant for practitioners interested in
understanding the main features of each method, their main
advantages, and their limitations. Several reviews covering the
recent explosion of interest in generating molecules leveraging
DL have been published. These, however, have mainly focused
on the various architectures andmolecular representations while
only briefly touching on the various methods for the targeted

Figure 1. Acetaminophen (center) under various molecular representations. Top-left: Sequence based representations. Prior to being fed to the
models, these sequences are also usually one-hot encoded. Top-right: Graph-based representations. While connection matrices are a suitable input for
standard architectures, graphs can also be directly handled using graph neural networks. Bottom: Three dimensional representations, images from
PubChem.26 Graphs may be enhanced by including 3D information as node attributes, such as internal distances and angles, or based on a coordinate
system such as Cartesian space. Molecular surfaces can be voxelized into a 3D grid for easier processing.
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generation of compounds. Particularly, Schwalbe-Koda and
Ǵomez-Bombarelli20 mention some of these methods, but they
primarily focused on the several molecular generation schemes.
Likewise, several other reviews also make note of a couple of
these methods while not delving into further discussion.19,21−24

Closer to our work, Sanchez-Lengeling and Aspuru-Guzik16

directly discussed the inverse molecular design problem,
touching on some methods for controlling the properties of
generated molecules.
Notwithstanding previous efforts on reviewing this field, we

feel that a more rigorous approach to this subject, containing a
more systematic coverage of the methods, can be important for
researchers working on these topics. To that end, here we aim to
provide a comprehensive review of DL methods for the targeted
generation of novel compounds. As such, after an introduction
to molecular representations, we present the most common
deep generative models and the underlying neural network
architectures. We, then, focus on the different optimization
approaches that allow to focus the search on molecules with
desired properties or activities, closing with a review of the main
practical applications.

■ REPRESENTING MOLECULES

The use of Machine Learning (ML) for chemical applications
requires the conversion of chemical compounds to a machine-
readable format suitable for computer processing. Although
trivial names such as ”benzene” and ”caffeine” are easy to
remember, they carry little to no information on the structure
and properties of the underlying compound. Systematic
terminology, such as the International Union of Pure and
Applied Chemistry (IUPAC) nomenclature of organic chem-
istry, can be very lengthy and not specify the full structure of a
compound. As such, several notation systems have been
developed to provide a suitable form of representing
molecules,25 each with a distinct impact on the performance
and outcomes of chemical ML methods. These are reviewed
next and are also illustrated by the example provided by Figure 1.
1D Sequences. Line notations, or sequences, represent

chemical structures as human readable strings of characters.
Although many line notations have been developed, such as the
SYBYL27 and the Wiswesser28 line notations, some have
achieved greater popularity. Next, we emphasize the linear
notations more commonly used in DL models for compound
generation.
SMILES. The Simplified Molecular Input Line Entry System

(SMILES) notation allows the representation of molecules as
sequences of “tokens”. It is built through a depth-first traversal of
the molecular graph, encoding atoms and how they connect in a
simple and machine-friendly form.29 As the process of encoding
a molecule into a string can start at different locations of the
molecule, there exists a one-to-many relationship where a single
molecule can be represented by several different SMILES. As
such, canonicalization algorithms have been developed to ensure
that a one-to-one relationship is possible.25,30 The SMILES
syntax also presents an added difficulty.
Rings and branches require symbols to occur in pairs which

often leads to syntactically invalid SMILES strings. Interestingly,
the one-to-many relationship between molecules and non-
canonical SMILES can be leveraged to perform data
augmentation in DL approaches, by allowing one to expand a
given data set with the various possible SMILES of themolecules
it contains. This was first suggested by Bjerrum31 to improve on

prediction tasks and later applied to molecular generation by
Bjerrum and Sattarov32 followed by several other teams.33−36

InChI. The International Chemical Identifier (InChI)
system, proposed by the IUPAC, consists of a notation language
that represents molecules as layered strings of characters and
aims to be a machine-readable unique representation of a
structure.37 Here, molecules are encoded as predefined layers of
information that are arranged in a specific order. InChI starts by
specifying a core parent structure to which further information
may be added. Each layer is separated by a delimiter “/” and
prefixed by a lower case letter identifying the layer (except for
the first layer).
Although very versatile in representing compounds, generat-

ing molecules represented as InChI in DL has not been
successful. This was first observed by Ǵomez-Bombarelli et al.10

who attributed this result to the added complexity of the InChI
syntax, when compared with SMILES. A later work byWinter et
al.38 also noted inferior performance when translating from
SMILES to InChI, reporting that the model failed to learn,
identifying the same probable cause. Nonetheless, InChI
provides a unique identifier for chemical structures which can
be exploited to derive a canonical SMILES string.

DeepSMILES.O’Boyle andDalke39 proposedDeepSMILES,
an adaptation of the SMILES syntax focusing on two of the
major causes of generating invalid SMILES, unmatched ring and
parentheses closures. This is addressed by using a single symbol
to indicate rings and by denoting branches solely using closing
parentheses.

SELFIES. Krenn et al.40 introduced a new linear notation for
constrained graphs termed SELFreferencIng Embedded Strings
(SELFIES). It is capable of enforcing the generation of
syntactically and semantically valid graphs and is readily
translated to and from them. The team compared its
performance against SMILES, DeepSMILES, and Kusner et al.
Grammar-VAE, reporting improvements on validity, recon-
struction accuracy, and diversity of generated molecules.

2D (Chemical) Structures. A popular solution is to store
compounds as graphs, where nodes represent atoms and edges
represent bonds. These molecular graphs are commonly
implemented using an adjacency matrix that specifies which
atoms are connected and the respective bond order/type.
Furthermore, nodes and edges can have associated properties,
such as, and respectively, relative spatial location and bond
order/type. This format allows the encoding of detailed
topological data in a readily processable form.41

3D Structures. Representing a molecule as a simple
connection table of atoms overlooks its three-dimensional
conformation and consequently disregards valuable informa-
tion. Representing the arrangement of atoms in space can be
accomplished by coupling a coordinate system to a connection
table. A common solution is to represent the molecule inside a
Cartesian space, assigning each atom in the connection table
spatial coordinates (x, y, z).25 An alternative is to use internal
coordinates, such as bond length, bond angle, and torsion angle,
to describe the position of each atom relative to its neighbors,
foregoing the need for a fixed coordinate system.25

Although useful, these two solutions only depict a molecule as
a three-dimensional graph without any volume. In reality, a
molecule has an electron cloud surrounding its atoms from
which many of its properties arise. In molecular surfaces, a
molecule is represented as a closed surface that delimits the
volume it occupies. Particularly, this surface outlines a threshold
value of electron density in the electron cloud that surrounds the
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molecule. The molecular surface can also be associated with
properties, such as the electrostatic or hydrophobicity potential
at particular locations.25

Databases. There are currently various repositories offering
vast collections of molecules. Some are more specialized,
providing focused libraries of known active compounds, such as
DrugBank,42 while others store more diverse compounds as is
the case of ChEMBL.43 The assorted molecular representations
can usually be directly obtained from a repository or derived
from SMILES or InChI in a straightforward manner using a
cheminformatics package, such as the open source toolkit
RDKit44 or the Chemistry Development Kit (CDK).45 Several
of commonly used databases in the de novo drug design are
identified in Table 1.

■ DEEP LEARNING MODELS FOR DE NOVO
MOLECULAR DESIGN

Architectures. Recently, generative DL has emerged as a
promising development for de novo molecular design, where
deep neural networks are employed as generative models. This
specific application has attracted considerable attention, with
several novel architectures being proposed, that are briefly
reviewed next, being also illustrated in Figure 2.
Recurrent Neural Networks. RNNs assume a sequential

structure in the data, one where a sample is composed of a set of
steps. This assumption is implemented by processing an input
consecutively and introducing a connection carrying the output
from previous steps into the current step. However, as the
number of steps increases, RNNs can suffer from vanishing or
exploding gradients during backpropagation, impairing the
training process and making the learning of long-term
dependencies extremely difficult. In practice, this is handled by
using specialized units such as gated recurrent units (GRUs)53

or Long Short-Term Memory (LSTM),54 which introduce
gates, learnable parameters controlling the flow of information
through the steps.12,13

Generative Adversarial Networks. GANs define a pair of
networks, a generator, and a discriminator, trained in
competition with each other. The generator is intended to
transform random noise into real looking data and is trained to
maximize the synthetic samples classified as real by the

discriminator. Meanwhile, the discriminator is trained to better
discern between generated and real data. The training
framework resembles a competition, with both networks
constantly improving and adapting to each other.12,13,55

Autoencoders. Autoencoders (AEs) are neural networks
trained to copy their input into the output with restrictions
imposed as to not simply learn the identity function. They are
usually thought of as two separate parts, an encoder that
transforms the input into a more compact latent state, and a
decoder that reconstructs the input from this representation.
Both are trained together to minimize the information lost from
reconstructing.12,13

Variational Autoencoders (VAEs) are a special type of AE,
which assume that the data was sampled from an arbitrary
statistical distribution. The encoder transforms its input into the
parameters of a multidimensional statistical distribution, that is,
a set of means and standard deviations. A sampling then occurs,
where a point is drawn from the encoded distribution and fed
into the decoder that reconstructs it into the original input. The
objective function used for training consists of a term penalizing
reconstruction errors and a term restricting the parameters
encoded to be close to a normal distribution. This stochastic
process acts to regularize the network while constraining the
encoded parameters close to those of a normal distribution helps
in forming a useful latent space.13,56

Adversarial Autoencoders (AAEs) are an alternative to VAEs
that employ adversarial training for structuring the latent space.
In particular, the encoder transforms its input into a single point
in the latent space. A discriminator network then attempts to
discern between samples of a prior statistical distribution and
encoded points. As such, the encoder can also be viewed as a
generator engaged in a competition with the discriminator,
ultimately balancing between the reconstruction and adversarial
error.57

Generating Molecules. There have been several ap-
proaches to applying generative DL to molecular generation,
mainly differing on the chosen molecular representation. As
such, usually more than one method surfaced for generating
each of the main representations discussed in section.
Borrowing from the natural language processing field,

molecules can be generated as sequences, such as SMILES, by
using RNNs. Specifically, when using RNNs as a generative
model, each token in the string is encoded as a one-hot vector
and the network is trained to predict the next character in the
sequence. The generation of new data is achieved by running the
network autoregressively, that is, using its output as the input for
the next time-step. This process is usually seeded with a special
start token and the generation of a molecule ends when a special
stop token is sampled. These two tokens are also respectively
prefixed and appended to each molecule during training, Figure
3 illustrates the generative process.
Several research groups have employed this method with a

stacked RNN, usually with LSTM cells, leading to good rates of
validity, novelty, and diversity.18,35,58,59 More complex archi-
tectures such as VAEs and GANs have also been employed to
generate molecules as strings; however, these also employ a
RNN for the sequence generation process, either as the decoder
or the generator.10,60,61

Despite some limitations of sequence-based approaches, such
as the need to learn a complex syntax and the mismatch between
the edit distance of two SMILES and the underlying molecular
similarity, these methods have produced impressive results

Table 1. Databases of Interesta

database molecules information

ChEMBL43 2M compounds bioactive drug-like small molecules
ExCAPE-DB46 1M compounds active/inactive molecules by target
ZINC47 750M

compounds
drug-like molecules, available for
purchase

PubChem26 111M
compounds

mostly small molecules

DrugBank42 13K drug entries approved and experimental drugs
GDB-174 166B

compounds
combinatorially generated molecules

REAL
database48

1.95B
compounds

database of enumerated structures

Tox2149 11K compounds toxicity data for various assays
QM850 22K compounds electronic spectra and excited state

energy
QM951 134K

compounds
geometric, energetic, electronic,
thermodynamic

PDBbind52 17K compounds 3D structures and binding affinity
aNumber of available molecules reported as of October 2020.
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including some instances of experimental validation of the
generated molecules.17,62−64

In an attempt to present molecules in a more natural and
intuitive form, several methods have been proposed to directly
generate molecular graphs. The generation process can be
modeled as a sequence of decisions that progressively builds a

graph. As Figure 4 describes, this approach usually employs
multiple networks with specific functions, such as adding new
nodes or adding edges between existing ones. In this paradigm,
Li et al.65 used two Graph Neural Networks (GNNs) to build
graphs, one deciding whether to add a new node followed by
another network deciding whether, and where, to add new edges

Figure 2. Top-left: Three layer Recurrent Neural Network (RNN) both rolled and unrolled. In each layer, the output of a step, besides flowing to the
next layer, also flows to the next step of the layer itself. These recurrent connections are depicted in the unfolded view of the network as vertical arrows.
Top-right: Variational Autoencoder (VAE) where the input is encoded to the parameters of a statistical distribution, namely, the means (μ) and
standard deviation (σ). In practice, these correspond to two vectors which, on the sampling step, are interpreted as a set of means and standard
deviations. Bottom-left: Generative Adversarial Network (GAN) composed by a generator and a discriminator. Training seeks not a minimum but a
useful equilibrium between the generator and the discriminator. Bottom-right: Adversarial Autoencoder (AAE) where the attached discriminator must
discern between encoded points and samples drawn from a prior statistical distribution.

Figure 3. Three layer RNN, unfolded over four time-steps. In autoregressive sequence generation, the process is started with a special start token, here
“G”. The model then predicts the next token, which is sampled and used as input for the next step. Generation ends when a stop token is predicted.
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between the existing nodes. Liu et al.66 used a similar generation
procedure, employing Gated Graph Neural Networks
(GGNNs) to build a VAE. The decoding process starts by
using a linear classifier to add attributes to a fixed number of
unconnected nodes. Edges between these nodes are then
progressively added with two densely connected networks, with
one deciding the target node and the other deciding the type of
edge. At each step, the attributes of the nodes are updated with a
GGNN and the process ends when a special stop node is
selected. Furthermore, invalid operations can be masked during
the generation allowing, for example, the enforcement of valency
rules. More recently, Mercado et al.67 compared six GNN
architectures coupled with a tiered Multi Layer Perceptron
(MLP) for sequentially building molecular graphs, reporting

that GGNNs showed the best performance for both speed and
quality of the generated structures.
An alternative is to generate graphs in a one-shot fashion by

directly outputting an adjacency matrix and corresponding
attribute tensors. De Cao and Kipf68 applied this approach with
MolGAN, a GAN whose generator outputs probabilities over
the adjacency matrix and the annotation matrix of a molecular
graph. Following a similar approach, Simonovsky and
Komodakis69 employed a VAE with a decoder that outputs
three probability distributions, one over the adjacency matrix,
one over the edge attribute tensor, and another over node
attribute tensor. Furthermore, Ma et al.70 proposed a
regularization scheme capable of enforcing validity constraints

Figure 4. Left: In sequential graph generation, a graph is built by evaluating a current partial graph, adding a node/edge and repeating until the network
outputs a stop signal. Right: In the one-shot generation of graphs, probabilities over the full adjacency matrix and node/edge attribute tensors are
produced. The graph is then obtained by taking a sample or the argmax of these outputs.

Figure 5. Left: General procedure for the generation of 3D shapes as proposed by Skalic et al.72 The convolutional decoder of a VAE is used to produce
a 3D molecular shape which is converted to SMILES by a captioning network. Right: General process for generating molecules as 3D point sets,
proposed by Gebauer et al.73 It is conceptually similar to the sequential graph generation, operating on point sets with an internal coordinate system.
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to graphs generated in the same manner, significantly improving
the validity of generated molecules.
Molecules are ultimately three-dimensional objects, with

electron clouds surrounding their atoms and multiple possible
spatial arrangements or stereoisomers. By generating molecules
as sequences or graphs, important information is omitted,
possibly hindering de novo design. Furthermore, determining the
relevant conformations is not a trivial problem, as even small
molecules can have many possible conformations.71 As such,
some attempts have been made toward generating molecules as
three-dimensional entities. Skalic et al.72 proposed to generate
voxelized molecular shapes with a VAE and then caption them
into SMILES with a separate network. A different approach was
proposed by Gebauer et al.73 where molecules are generated as
point sets, iteratively built based on the pairwise distance to
previously placed points/atoms. Figure 5 outlines the general
process of these two last approaches. More recently, Ragoza et
al.74 proposed a method to generate molecules as 3D atomic
density grids and then apply an optimization algorithm to find
the best fitting 3D chemical structure.
Evaluating Generative Models. Given the rapid growth

this field is experiencing, the development of systematic and
robust methods to assess the performance of novel approaches is
essential to help guide future work. Aiming to help address this,

Preuer et al.75 introduced the Fréchet ChemNet Distance
(FCD), a metric for comparing the generated molecules against
the training data set. This score measures the distance between
the hidden representations of the two sets of molecules in
’ChemNet’, a recent multitask network for predicting biological
activities. As this network was trained to predict the bioactivities
of about 6000 assays, the team proposes that FCD combines
into a single metric a multitude of important molecular features,
which is therefore useful to evaluate generative models.
Aruś-Pous et al.76 proposed a method to evaluate how well a

generative model learns to cover the relevant chemical space.
According to the team, this can be accomplished by training the
model on a fraction of a large enumerated data set, such as GDB-
13, and then tracking the percentage of the total data set the
model can recover, how uniform the coverage is, and also
whether it generates molecules outside the data set. These
results can then be compared to an ideal model, directly
sampling the data set, that serves as an upper bound for
performance. Furthermore, the team introduced a method for
evaluating the quality of the training process by comparing the
negative log-likelihood of the sampled, training and evaluation
sets throughout the training process.
Brown et al.77 introduced GuacaMol, a framework for

benchmarking models for de novo molecular design. This

Table 2. Methods for the Directed Generation of Molecules

method representation architecture ref

Transfer Learning SMILES Stacked RNN 18, 34, 59, 62, 63, 82
SMILES 83
Graph GNN 84
3D point sets SchNet +2 MLP 73

Reinforcement Learning Pretrain + RL SMILES Stacked RNN 18, 58, 82, 85
SMILES VAE 86
Graph two RNNs 87

Adversarial + RL SMILES GAN 60, 88−90
Graph GNNs 91, 92
Graph GAN 68

Latent Space Navigation Bayesian Optimization SMILES VAE 10, 93
SMILES AAE and VAE 94
SMILES (production rules) VAE 95, 96
Graph (junction trees) VAE 97
Graph VAE 98

Gradient Ascent Graph (junction trees) VAE 97
Graph VAE 66, 99

DL Model SMILES GAN + AE32 36
Graph (junction trees) CycleGAN + VAE97 100

GA SMILES AE 101
PSO SMILES AE 102
CLaSS SMILES VAE 103

Conditioned Conditioned SMILES VAE 61
SMILES Stacked RNN 104
SMILES Two AAEs 105
SMILES (production rules) Two GANs 106
SELFIES VAE 107
Graph GNNs 65, 84
Graph VAE 69
Graph (junction trees) VAE 108
3D shape VAE + RNN 72
3D shape VAE + GAN 109

semisupervised SMILES VAE 110
SMILES AAE 64
Graph (scaffold extension) VAE 111

Journal of Chemical Information and Modeling pubs.acs.org/jcim Review

https://doi.org/10.1021/acs.jcim.0c01496
J. Chem. Inf. Model. 2021, 61, 5343−5361

5349

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.0c01496?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


framework was divided into two main sets of benchmarks,
distribution-learning and goal-directed generation, aiming to
emulate the two main use cases of these models. The first set
measures how well the models learn to generate new molecules,
using validity, uniqueness and novelty rates, and also whether
they match the properties of the training data set, measuring the
FCD and the divergence in the distribution of a variety of
physicochemical descriptors. The second set evaluates the
targeted generation performance, including benchmarks such as
optimizing given molecular features or properties, generating
molecules similar to a target compound or recover a specific
target molecules. In addition, the team also included a
benchmark for assessing molecular quality, leveraging rule sets
for building high-throughput screening libraries. Lastly, a
standardized data set alongside a number of baselines were
also released with this framework to help compare novel
approaches. Polykovskiy et al.78 proposed the benchmarking
framework MOSES, for evaluating the distribution learning
performance of generative models. To assess whether the
models can generate new molecules, it measures the validity,
uniqueness and novelty rates along with the internal diversity
and the fraction of generated molecules that pass a set of
structural filters for molecular quality. The framework also
provides a set of metrics meant to evaluate how well the model
learned features of the training data set. For this purpose, it
presents the FCD, the distance between the distribution of
various physicochemical properties, the Tanimoto Similarity to
a nearest neighbor, the cosine similarity of Bemis−Murcko
scaffolds, and also the cosine similarity of BRICS fragments.
These last twometrics help compare molecules at a substructure
level, while the first three help to capture more abstract chemical
and biological similarities. The team also released various useful
baselines, as well as a standardized data set with a recommended
train, test and scaffold test split.
Building on these early works, other approaches to evaluating

molecular generative models have continued to be developed.
Specifically, Renz et al.79 highlighted some shortcomings of
currently used evaluation metrics. Specifically, the team details
how a trivial model can excel in distribution-learning bench-
marks and also how goal-directed generation can exploit biases
in the scoring functions, producing compounds with high scores
but of little practical use. Cieplinski et al.80 proposed to better
represent real discovery problems by using docking as a
benchmark of the different methods of goal-directed generation.

Zhang et al.81 improved on their earlier work, measuring the
coverage of chemical space by generative models,76 by also
evaluating the coverage of functional groups and ring systems.
Furthermore, the team provided results for various, recently
introduced, generative model architectures allowing for their
comparison as well as providing useful baselines for future
works.

■ GENERATING COMPOUNDS OF INTEREST

The automatic generation of novel molecules usually targets
specific properties and characteristics, such as solubility or
bioactivity. As such, the ability to create not just new, but also
focused, molecules is of interest. Table 2 summarizes state-of-
the-art approaches for targeted compound design, further
described in this section.

Screening. Testing large numbers of compounds to see if
they show evidence of having desired properties is usually one of
the first steps in the drug discovery pipeline. This usually entails
a virtual screening for bioactivity either based on a target, as in
docking, or on known ligands, as in ML classifiers and similarity
searching.112 This process can be used on its own or after other
methods of biasing the generation process. Docking refers to a
process of fitting a molecule to the binding site of a given target
whose 3D structure is known. This is usually attained by scoring
different poses (spatial orientations) of a molecule relative to its
target. The score is calculated by a scoring function, usually
hinged on predictive changes in Gibbs free energy.113

Yuan et al.,17 for example, docked generatedmolecules against
VEGFR-2, a mediator of the VEGF angiogenesis pathway, to
choose compounds to be synthesized. Similarly,
Polykovskiy et al.64 docked molecules against Janus kinase 2

and 3 as part of the selection process for synthesis.
An alternative to predict how well a molecule may bind to a

receptor is through the use of supervised machine learning
classifiers trained to distinguish between known actives and not
actives. An example of this approach is the work done by
Olivecrona et al.58 where a support vector machine was trained
to predict activity toward the Dopamine type 2 Receptor
(DRD2).
In a similarity search, the similarity between a molecule and a

set of molecules that are known to be active is determined. A
common approach is to compute the Tanimoto coefficient
between the fingerprints of eachmolecule. Kadurin et al.114 used

Figure 6. In transfer learning, a general model is first trained on a large data set and then fine-tuned toward generating the desired properties with a
smaller, focused, data set.
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this method to search PubChem for molecules similar to the
fingerprints generated by their model.
Transfer Learning. Despite that a simple screening of

unspecific model outputs may lead to finding molecules of
interest, the process is somewhat inefficient as a large number of
the generated molecules end up being discarded. A less wasteful
approach would be to first bias the model toward producing
(more) molecules meeting the desired properties. This can be
achieved with transfer learning, a training procedure where a
model first learns to perform a similar task, but for which larger
data sets exist, later being fine-tuned on the intended data.12

This approach assumes that several of the underlying attributes
learned on the first set are transferable to the second set. In
molecule generation, this is usually applied on sequence-based
approaches where a large data set such as ZINC or ChEMBL
first helps to learn the syntax of the string representation and
then a smaller, targeted, data set biases the model toward
particular attributes, such as a given biological activity, as it is
illustrated by Figure 6.

Transfer learning has been successfully applied to fine-tune
stacked RNNs generating SMILES. In 2017, Segler et al.18

applied this method to a RNN with three LSTM layers
generating SMILES. The model was later fine-tuned on known
ligands of specific receptors and reported to successfully recover
molecules from a hold-out test set.
Merk et al.62,63 employed the same method, where their fine-

tuned SMILES-based RNN was used to generate compounds to
be later synthesized. The team then performed in vitro activity
testing, reporting that four out of five, and in a later work two out
of four, were active. Gupta et al.59 experimented with fine-tuning
on small data sets, reporting that even just a set of five molecules
can lead to a model capable of generating unseen actives.
Moreover, Moret et al.34 also looked into the applicability of
transfer learning in low data regimes when combined with data
augmentation. With just five dissimilar natural products, they
were able to generate structurally diverse molecules covering a
broad range of scaffolds. Departing from sequence-based
representations, Gebauer et al.73 used transfer learning with

Figure 7. Top: The model is first pretrained through maximum likelihood estimation, learning the structure of the output space along with general
chemical rules. Then, using RL, the model is optimized for specific properties such as binding affinity or solubility. While similar in concept to transfer
learning, the use of RL allows one to bias the model toward a wider range of objectives. Bottom: Directed generation with RL and GAN. This method
leverages adversarial training to produce feasible molecules and RL to bias the generation toward desired properties.
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their point set based model to target a specific value range of
HOMO−LUMO gap, a molecular property relevant for the
development of organic semiconductors.
Transfer learning can also be used as part of a larger

procedure, as a mean to accelerate training and improve results.
Notably, Li et al.84 fine-tuned their model before generating
molecules conditioned for a specific bioactivity profile. In a
similar vein, Blaschke et al.82 used transfer learning to focus the
model toward features relevant to their objective, facilitating
their subsequent reinforcement learning procedure.
Reinforcement Learning. A different approach to bias

models toward generating molecules of interest is reinforcement
learning (RL). RL outlines a framework where an agent, or
system, interacts with an environment through a sequence of
actions that are dictated by a policy and evaluated by a reward
signal. The agent must iteratively revise the policy to improve
the cumulative rewards over the full sequence of actions. This
framework aims at learning a system capable of adopting the best
set of actions in a given environment.115,116 In de novo
generation of molecules, RL has been applied in both sequence
and graph-based approaches.
One application is to first pretrain a model through maximum

likelihood estimation and then optimize it in a RL framework
toward generating molecules with desired properties. This
concept is presented in Figure 7 (top). In this vein, Segler et al.18

biased their stacked RNN by coupling it to a prediction model
and iteratively fine-tuning on the generated active compounds.
With just eight iterations, the team reported the successful
recovery of active compounds from the test set. Olivecrona et
al.58 trained a stacked RNN to generate molecules as SMILES
and, using RL, optimized it toward generating analogues to
celocoxib and generating molecules predicted as active against
DRD2. Popova et al.87 applied this concept to the sequential
generation of graphs. Their model, termed MolecularRNN, was
first trained to generate diverse realistic samples and then
optimized for either quantitative estimate of drug-likeness
(QED), melting point, and octanol−water partition coefficient
(log P) penalized by synthetic accessibility (SA) and large rings.
Blaschke et al.82 developed a production ready generative

method, termed REINVENT2.0, based on a stacked RNN
leveraging randomized SMILES and reinforcement learning.
Later, Blaschke et al.85 proposed a method to improve diversity
in the REINVENT framework, termed memory-assisted RL.
This method creates ”buckets” grouping similar generated

molecules, once a bucket reaches a set capacity, subsequent
molecules falling in that cluster are penalized. This memory unit,
therefore, helps lead the model to unexplored areas of chemical
space. The framework was employed to target a specific range of
log P and optimize the predicted activity for HTR1A and for
DRD2. The team noted an increase in the generation of diverse
scaffolds, while producing highly scored compounds.
Zhavoronkov et al.86 used RL to optimize a SMILES based

VAE toward generating selective DDR1 kinase inhibitors. The
objective was based on the predictions of an ensemble of three
Self-Organizing Maps (SOMs) predicting general activity
toward kinases, selectivity for DDR1, and novelty of generated
molecules. From the generated compounds, six were selected for
synthesis and in vitro testing with two of those being reported as
both active and stable. Further in vivo testing was also performed
on one molecule, with reasonable pharmacokinetic properties
being reported. Lastly, the authors also noted the substantial
reduction in both time and costs of their DL based approach
compared to traditional drug development pipelines.
GANs and RL can also be combined to generate realistic, but

optimized, molecules. Figure 7 (bottom) outlines this method.
More specifically, a GAN is trained in a RL framework
combining the adversarial reward with other relevant objectives.
This method was employed by Guimaraes et al.60 in ORGAN to
generate SMILES optimizing molecular properties such as log P,
SA, and QED. Improving on the previous method, Sanchez-
Lengeling et al.88 proposed ORGANIC, optimizing for melting
point, drug-likeness with QED, and Lipinski’s rule-of-five and
finally for nonfullerene electron acceptors for use in organic solar
cells. Putin et al.89 proposed ATNC, improving ORGANICwith
a differentiable neural computer as generator and a novel reward
function to improve the diversity of generated structures. With
this model, the team optimized for similarity to known kinase
inhibitors and synthesized a molecule similar to a generated one.
With a similar method but departing from sequence-based

generation, You et al.91 proposed GCPN to sequentially
generate molecular graphs with optimized properties. Reporting
that it can be used to target specific ranges of log P andmolecular
weight and also optimize log P penalized by SA and large rings,
while constrained by similarity to a starting molecule. Karimi et
al.92 employed a similar molecular generative process to
generate new drug combinations. Specifically, the proposed
method aimed to directly generate sets of novel molecules that
could be useful as disease-specific drug combinations. To this

Figure 8. Here, the latent space of an AE is used as a reversible and continuous molecular representation allowing for the application of various
optimization algorithms.
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end, the team employed a RL process to sequentially generate
sets of molecular graphs guided by a chemical validity reward, an
adversarial reward enforcing SA and drug-likeness, and a
network-based reward to help target the desired disease by
incorporating prior knowledge from gene−gene, gene-disease,
and disease−disease networks.
Also combining GANs and RL, De Cao and Kipf68 proposed

the generation of molecular graphs in a one-shot fashion in their
model MolGAN.
Exploration and Exploitation of Molecules Latent

Space. Instead of optimizing models for the desired properties,
models based on the AEs architecture provide a latent
representation of molecules that can be used for property
optimization or targeted generation of compounds. These
methods, which are illustrated in Figure 8, make use of well
structured latent spaces, for which VAE and AAE are common
choices. Different approaches have been suggested to navigate
and shape the latent space of models leveraging both sequence
and graph-based representations.
Bayesian Optimization. Bayesian Optimization (BO) is a

sequential model-based optimization method suitable for black-
box problems. It has two main elements, a probabilistic
surrogate model and an acquisition function. The surrogate
serves to estimate the objective function given some currently
known data, then the acquisition function leverages themodel to
determine the best point in the objective function to evaluate.
These new data are then used to update the surrogate model and
the process repeats for a set of iterations, ideally leading to the
global maximum of the objective function. Common choices are
a Gaussian Process for the surrogate and the Expected
Improvement for the acquisition function.117,118

In the de novo design, BO is used to optimize the properties of
molecules by operating on their latent representation, using the
decoder to reconstruct molecules from the suggested points. In
this application, approximate inference is often used, in the form
of a sparse Gaussian Process, due to the large number of
evaluations that are made.
BO has been often used to demonstrate that the latent space

of a particular architecture can be effectively navigated. In the
context of molecular generation, it was first suggested by
Ǵomez-Bombarelli et al.10 who, in an earlier version of their
work, optimized the log P of molecules penalized by their SA and
presence of large rings. This methodology, and objective
function, was then adopted in subsequent approaches by Kusner
et al.95 with GrammarVAE and Dai et al.96 with SD-VAE which
leveraged SMILES production rules and by Jin et al.97 in JT-VAE
and Samanta et al.98 in NEVAE which dealt with molecular
graphs. A more practical objective was employed by Blaschke et
al.94 who optimized the predicted DRD2 activity, reporting that
BO was capable of effectively navigating the latent space of their
uniform AAE and find novel active molecules. Lastly, Griffiths
and Hernández-Lobato93 applied constrained BO as a way to
mitigate training set mismatch, where the BO would visit latent
points far from the training data that the model struggles to
reconstruct. More specifically, the acquisition function was
altered to only consider latent points which decoded to valid
molecules with a tangible molecular weight. This was reported to
lead to the generation of higher quality molecules using three
drug-likeness metrics.
Genetic Algorithms and Particle Swarms. Once a

continuous latent space is obtained, other optimization
algorithms can be employed to optimize for desired properties.
For example, Sattarov et al.101 used a Genetic Algorithm (GA)

to explore the latent space of their SMILES based seq2seq AE.
Setting as goal optimizing molecules for activity toward the
adenosine A2A receptor, they reported the generation of
libraries enriched with actives and novel scaffolds. Winter et
al.102 also explored the latent space of a SMILES based seq2seq
AE using a different meta-heuristic, Particle Swarm Optimiza-
tion (PSO). They experimented with optimizing different
properties, such as QED, penalized log P, activity toward EGFR,
and activity toward BACE1. Furthermore, multiobjective
optimization was also attempted by minimizing and maximizing
activity for each of the receptors, reporting molecules with the
desired activity profile and favorable absorption, distribution,
metabolism, excretion, and toxicity properties.

Gradient-Based Methods. Gradient-based methods are
alternative optimization algorithms that additionally require
the objective to be differentiable. Although fulfilling the
differentiability requirement might not always be possible,
training a secondary neural network to predict the desired
properties, in parallel with the main model, allows to obtain the
gradient of a latent encoding with regard to the so desired
property. This process has been used to optimize chemical
properties through gradient ascent in some approaches, mainly
as a benchmark for the smoothness of latent space.
Jin et al.97 optimized the penalized log P constrained to a set

degree of similarity to the starting molecule. More specifically,
the team used a feed-forward network as a predictor and
constrained the optimization with the Tanimoto similarity to the
original molecule. Liu et al.66 employed a similar methodology,
optimizing however for the QED based on the gradients of a
gated regression network. Bresson and Laurent99 used gradient
ascent with a single multilayer perceptron to, and following the
work of Jin et al.,97 optimize the penalized log P and the log P
constrained by similarity.

Deep Learning for Latent Space Navigation.Deep Learning
models can be trained to operate on molecular encodings of a
separate generative model. Prykhodko et al.36 applied such an
approach to their LatentGAN, a GAN trained to generate latent
points of a separate SMILES heteroencoder. The real data used
for training is obtained by passing SMILES through the encoder
of the AE, while during the generation the novel latent points are
converted into molecules using the decoder part of the AE. By
training their model to produce realist encodings of compounds
with activity for either EGFR, HTR1A, and S1PR1 (separate
model for each), they reported the generation of valid and novel
SMILES with a large percentage predicted as active. In a similar
vein, Maziarka et al.100 proposed mol-cycleGAN, a cycleGAN
operating on the latent space of the JT-VAE97 to optimize
molecules, while keeping the results similar to the starting
compound. Specifically, the model learns to convert molecules
(points in latent space) from one set into another and back
again. For example, it can convert from a set with only three
aromatic rings into a set with only two, all while keeping
transformed points similar to the original. The team reported
that the model was capable of removing halogen moieties,
replace bioesters, alter the number of rings, and increase the
predicted activity toward the DRD2.
More recently, Chenthamarakshan et al.103 applied a VAE

generating molecules as SMILES and achieved controlled
generation with Conditional Latent Attribute Space Sampling
(CLaSS).119 Under CLaSS, a Gaussian mixture model is trained
to match the posterior of the trained encoder and a binary
classifier trained for predicting desired properties from latent
encodings.
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Then, samples are drawn from the mixture model and filtered
using the latent classifiers with only those predicted to have the
specified attributes being decoded back to sequences. This
method was employed to generate possible leads targeting
SARS-CoV-2, using latent attribute predictors for three
molecular properties and the binding affinity to relevant protein
targets.
Conditioned and Semisupervised Generation. An

alternative to both biasing the model and latent space
optimization is to include explicit inputs to the model for
controlling the properties of the generated molecules. As
illustrated in Figure 9 (top) with an AE, this is achieved by
introducing a condition vector to the models’ input, effectively
biasing/conditioning the generation process toward the
specified values. During training, the condition vector
corresponds to various properties of the encoded molecule,
leading the model to infer a correlation between the two. Later,
during sampling, this vector can be altered, controlling the
properties of the generated molecules.
Li et al.84 used a sequential graph generator based on GNNs

and added a conditioning vector at each step of the graph
building process. Their model was conditioned on molecular

scaffolds, QED, SA and, after fine-tuning, the predicted activity
toward JN3 and GSK3β. The team was able to successfully
generate inhibitors for either receptor, as well as dual inhibitors.
A similar process was employed by Li et al.65 to condition a
GNN for sequential graph generation by appending the
condition vector solely to the initial node states. Conditioning
on the number of atoms, bonds and aromatic rings, the model
was able to extrapolate and successfully generate molecules
when conditioned with values outside the training data.
Kotsias et al.104 conditioned a SMILES based stacked RNNby

setting the conditioning vector as the initial internal state of the
network. Two different approaches were compared, either
conditioning with molecular fingerprints or building the
condition vector with molecular properties such as Topological
Polar Surface Area (TPSA), molecular weight, and bioactivity.
They reported that while both approaches could generate
molecules satisfying the desired properties, the fingerprint-based
model generated molecules with scaffolds similar to the seed
compound, facilitating the encoding of structural restrictions.
Meanwhile, the property-based model generated more dissim-
ilar scaffolds, enabling a more versatile exploration of chemical
space.

Figure 9. Top: In conditioned generation, the desired properties are introduced as explicit inputs to the model. These properties are precomputed for
each compound of the training set and used during training to induce a correlation between the two. This correlation is then leveraged during the
generation process to target specific property values. Bottom: In the semisupervised case of conditioned generation, only part of the training set has the
desired properties available. To overcome this, a predictor network is trained on the labeled instances and used to predict the properties of unlabeled
ones.
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The conditioned generation methodology is also applicable to
AEs, where the condition vector is generally appended to the
input of both the encoder and decoder. For example,
Simonovsky and Komodakis69 demonstrated conditioned

generation with their GraphVAE by controlling the number of
heavy atoms in generated molecules. Lim et al.61 used a
conditioned VAE to control molecular weight, TPSA and
number of H+ donors and acceptors, reporting independent
control of properties, as well as generating molecules with
properties beyond those seen during training. Working with a
3D representation of molecules, Skalic et al.72 proposed to
condition their shape-based VAE with the location of
pharmacophores. Specifically, the decoder received a 3D shape
constructed by placing property points close to atoms with that
property. The team noted that conditioning the reconstruction
of random latent points often led to implausible output shapes,
but conditioning the decoding of seed molecules improved the
reconstruction of pharmacophore features.
When the desired properties are not readily determinable and

no large labeled data sets are available, common with bioactivity
data, semisupervised-AE can be used, Figure 9 (bottom). A
semisupervised-AE consists of an AE with an added predictor
network, which receives the molecule as input and outputs its
properties. These are then appended to both the input and
output of the encoder, ultimately conditioning the decoder. The
architecture is termed semisupervised because the data set does
not need to be fully labeled. Labeled instances are used for
training the predictor, replacing its output, while unlabeled
samples have their properties predicted by the predictor
network.120

Kang and Cho110 employed a semisupervised-VAE condi-
tioned on molecular weight, log P, and QED and experimented
with various fractions of labeled/unlabeled data used for
training. Polykovskiy et al.64 evaluated the application of
different disentanglement techniques to a semisupervised-
AAE. With their most successful method, termed semi-
supervised entangled AAE, the team was able to generate
molecules conditioned on the activity toward the Janus kinase 2
and Janus kinase 3. By setting low activity for JK2 but high
activity for JK3, they generated a set of selective inhibitors that
were then filtered. A single molecule was synthesized and
reported to have in vitro activity and selectivity for the Janus
kinase 3.
Lim et al.111 used a conditioned VAE to extend molecular

scaffolds, producingmolecules with predetermined scaffolds and
desired properties. The model was reported to successfully
condition themolecular weight, TPSA and log P. Furthermore, a
semisupervised extension of themodel was used to design EGFR
inhibitors, reporting a significant enhancement of the predicted
inhibition potency.
More recently, Ḿendez-Lucio et al.106 used a VAE in

conjunction with a GAN conditioned on gene expression data.
More specifically, a two-stage GAN is trained to generate latent
points of a GrammarVAE,95 with its decoder serving to
reconstruct the points generated by the GAN. Here, the
conditioning vector is an input to the generator, alongside
Gaussian noise. Also, two networks, one per stage, predict
whether the generated latent points correspond to the gene
expression profiles used for conditioning the generator. Using
this method, the team conditioned the model on the gene
expression of ten knockouts of pharmacological interest,
reporting the generation of molecules similar to known active
compounds.

Born et al.107 proposed PaccMannRL, a framework that
leverages gene expression data and combines reinforcement
learning with conditioned VAEs. This method starts by training
two separate VAEs, one to reconstruct molecules, represented as
SMILES, and the other to reconstruct gene expression data. The
two models are then combined, with the output of both
encoders being summed together and used as input to the
molecular decoder. This new architecture is then trained
through reinforcement learning toward generating molecules
targeting the specified gene expression profile. The framework
was then employed to generate anticancer compounds, with the
team reporting an improvement in predicted efficacy while
maintaining similar validity scores.
Also exploiting omics data, Shayakhmetov et al.105 proposed a

SMILES based conditioned AAE to generate molecules capable
of inducing a desired transcriptomic change. Particularly, the
model is composed of two AAEs, one tasked with reconstructing
molecules and the other with reconstructing gene expression
profiles, with the conditioning vector being produced by the
gene expression encoder as a separate latent vector. As such, this
architecture produces a three-part latent space, with one part
meant to encode molecule specific information, another one to
encode expression specific information, and the last to encode
features relevant to both. This specific arrangement was
designed to aid the model in ignoring nonrelevant cellular
processes that are included in the gene expression profile from
the changes induced by the molecule.
Masuda et al.109 proposed to condition their previously

proposedmodel, generatingmolecules as 3D structures, with the
3D structure of the intended binding site. Specifically, a separate
encoder module was added to encode the binding target
structure into a latent representation, which was then
concatenated to the output of the molecular encoder,
conditioning it. With this approach, the team reported that, by
sampling around a seed molecule, they often could generate new
compounds with better binding affinities.
A different approach was taken by Jin et al.108 who adapted

JT-VAE to optimize input molecules by adding adversarial
training and a conditioning vector to the latent encoding. That
is, the model was trained to ”translate” molecules missing the
desired properties into molecules with those qualities. The
adversarial objective ensures that the new molecule has the
desired properties, while the conditioning vector directs the
generation process. With this method, the team reported success
when optimizing for the penalized log P, QED and the predicted
activity toward DRD2 while constraining by the similarity to the
initial molecule.

Synthetic Accessibility. Successfully applying these
methods to practical use cases will inevitably depend on
synthesizing the novel compounds. However, ensuring the SA of
the generated molecules is a major hurdle that often goes
unnoticed.
Seeking to help address this, Gao and Coley121 discussed and

compared three approaches capable of guiding generative
models toward synthesizable compounds. Specifically, they
considered the use of synthesizability scores and retro-synthetic
analysis to filter generated molecules, filter the training data set
or to modify the objective function used for targeted generation.
The team reported that, despite useful, the first two methods
often proved insufficient. Furthermore, modifying the objective
improved synthesizability, but at the cost of the main goals.
Horwood and Noutahi122 directly addressed this issue in their

RL based method by iteratively building novel molecules
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through a series of chemical reactions. With this approach, the
team reported the successful optimization of multiple objectives,
while maintaining good diversity among generated molecules
and also providing a valid synthetic route for every novel
molecule.
A similar approach was taken by Gottipati et al.,123 which also

applied RL to generate molecules using a sequence of chemical
reactions. Like the previous method, the team reported attaining
high scoring generated compounds while ensuring SA.
Bradshaw et al.124 also proposed to generate novel molecules

by recursively combining simple building blocks through a series
of chemical reactions. The team proposed two variants of their
approach, one where RL is employed to perform targeted
generation and, departing from the two previous works, a
Wasserstein Autoencoder (WAE) basedmodel. The later one, as
discussed in the previous sections, should allow other methods
of targeted generation to be used.

■ CURRENT APPLICATIONS
There are multiple proposed approaches to not only generate
molecules, but also do so in a directed manner, controlling and
optimizing for desired properties. The adopted objectives have
more often been employed as a benchmark of the proposed
methodologies than as goals in themselves. While some have
been of limited real use, like maximizing log P penalized by SA
and large rings, others such as optimizing for specific bioactivity
profiles can have a more direct application in fields like drug
discovery. For example, the swiftness of these methods has
recently found use in the creation of therapeutic leads for SARS-
CoV-2.
Drug Development. The large costs associated with drug

development has often led to the implementation of various
computational tools to assist and accelerate the process. As such,
a large focus has been placed on applying deep generative
models to various stages of early drug development. The most
commonly suggested application has been to the de novo drug
design. Indeed, the bulk of methods here described are capable
of generating broad molecular libraries, with a large part capable
of focused generation. These libraries can then be used for
virtual screening or high-throughput screening, hopefully
exploring previously unseen regions of the chemical space.
A different suggested application has been for molecule

optimization. Although the usefulness of some objectives has
been questioned, the ability to, for example, optimize solubility

or improve SA while maintaining high similarity to an original
structure can help inform lead optimization. Furthermore, easily
and reliably finding close novel analogues to a molecule or
introducing specific modifications like substituting bioesters can
also be of practical use. Lastly, some attention has also been
given to fragment-based drug development, with methods
proposed for growing a molecule from a specified fragment59 or
linking two fragments together.125,126

Several different biological targets have also deserved
attention. Table 3 summarizes these applications. It notes the
various instances of experimental validation of de novo generated
molecules that have already been performed. These are mostly
successful in vitro activity testing, with two instances of in vivo
validation. These successful practical realizations encourage
further research into this blooming field.

COVID-19. With the recent SARS-CoV-2 pandemic,
generative DL methods became an attractive option for the de
novo design of possible therapeutic leads. Indeed, in the span of a
few months, several approaches were proposed and a large
number of potential compounds were shared.
Bung et al.83 biased a SMILES based stacked RNN with

transfer learning toward generating possible binders of SARS-
CoV-2 proteases. Specifically, a set of 1.6 million molecules from
ChEMBL were used for pretraining and then around 2500
protease inhibitors were used for fine-tuning the model.
Furthermore, reinforcement learning was used to control
other molecular properties such as QED, log P, molecular
weight and SA. After screening the generated molecules using
docking simulations, the team shared 31 potential leads.
Shaker et al.130 used their SMILES-based in-house model,

named Rosalind, to generate molecules targeting the SARS-
CoV-2 main protease Mpro. After applying filters for binding
affinity predicted by docking, QED, molecular weight, structural
alerts and predicted toxicity the team shared a list of 40
compounds.
Chenthamarakshan et al.,103 as described earlier, employed

CLaSS on a SMILES based VAE to generate compounds with
favorable binding to three relevant target proteins of SARS-
CoV-2. The controlled sampling leveraged property predictors
for QED, SA, log P, and binding affinity to a specified protein.
Filters were then applied for toxicity, retrosynthesis prediction
and binding affinity to the relevant target with docking and a set
of 3.5K potential leads was shared by the team.

Table 3. Experimental Validation of Molecules Generated with Generative DL

activity

target
directed
generation in silico in vitro in vivo ref

RXR, PPAR transfer learning SPiDER 5 synthesized; reported: 4 active 63
RXR transfer learning SPiDER

WHALES
4 synthesized; reported: 2 active 62

JK3 selective reinforcement
learning

docking 1 synthesized; reported: active and selective for JK3 64

kinase inhibitors reinforcement
learning

50 purchased (similar); reported: 7 active 89

DRD2, 5-HT1A, 5-
HT2A

transfer learning MT-DNN on
ECFP4

1+6 analogues synthesized; reported: active for the 3
receptors

1+6 analogues; 1 active and
acceptable safety

127

VEGFR-2 train on actives docking 5 synthesized; reported: 3 active and noncytotoxic 17
DDR1 reinforcement

learning
SOM
pharmacophore

6 synthesized; reported: 2 active and stable 1 tested; half-life 3.5 h; 10
analogues tested

86

p300/CBP inhibitors transfer learning docking 1+26 analogues synthesized; reported: active,
selective, and stable

good bioavailability, efficacy, safety 128

LXR agonists transfer learning 25 synthesized, 3 purchased; reported: 12 active 129
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Zhavoronkov et al.86 used an internal pipeline leveraging 28
different models and various molecular representations to
generate molecules targeting the SARS-CoV-2 main protease
Mpro. Docking was employed to rank the compounds by their
affinity and a set of 10 molecules was shared by the team.
Born et al.131 adapted their previously proposed framework,

PaccMannRL, to generate compounds addressing 41 targets of
SARS-CoV-2. Specifically, the molecular VAE was adapted to
generate SELFIES (instead of SMILES) and the conditioning
was performed based on a protein VAE (instead of gene
expression data).
Organic Photovoltaics. The design of new organic

photovoltaics has great potential to help reduce the dependence
on fossil fuels by enabling cheaper and more efficient solar
energy.132 Deep generative methods can be employed to quickly
design new molecules targeting desired properties such as a
specific HOMO−LUMO gap and high Power Conversion
Efficiency (PCE). Indeed, some attention has already been
devoted to this application.
For instance, Sanchez-Lengeling et al.88 applied ORGANIC

toward generating nonfullerene electron acceptors for use in
organic solar panels, reporting an increase in the average
predicted PCE. Jørgensen et al.133 used a GrammarVAE95 for
generating donoracceptor polymers optimized for a specific
range of optical gap and LUMO energy. Griffiths and
Hernańdez-Lobato93 employed their proposed constrained
BO method toward generating molecules optimized for PCE,
reporting that the averaged score of the generatedmolecules lied
above the 90th percentile of the training data. Gebauer et al.73

leveraged transfer learning to fine-tune their model toward
generating molecules targeting a specific HOMO−LUMO gap.
Similarly, Yuan et al.134 biased a RNN with transfer learning to
generate donor−acceptor oligomers targeting a specific
HOMO−LUMO gap.

■ FUTURE DIRECTIONS OF RESEARCH
Over the last years, the field of deep generative learning for
molecular design has seen an explosion of interest, with a great
number of different and novel approaches being proposed.
Within this blooming field, some trends emerged that have
somewhat guided novel research and give clues for the direction
of future developments.
Many of the early approaches to generating new molecules

with DL borrowed from the NLP field, using RNNs for
modeling and generating molecules as sequences. However, in
the meantime, the state-of-the-art in language processing has
evolved to leverage attention mechanisms within architectures
like the transformer, BERT and GPT-3.135−137 Indeed, these
advances have begun to trickle into the field of generative
molecular design with recent works, leveraging the transformer
architecture to approach the generation of new bioactive
compounds as a translation from the amino acid sequence of a
target protein to an active SMILES,138 to link fragments
together126 or to perform scaffold hopping.139 Likewise,
approaches leveraging these new methods, and others that
may emerge from NLP, are likely to receive further attention in
the future.
With regard to molecular representations, while early

methods dealt mainly with SMILES,18,58 several subsequent
works sought a more meaningful representation by directly
generating molecular graphs.87,91 The pursuit of this goal has led
to the proposal of novel graph generation procedures and will
likely inspire interesting new research.

Nevertheless, graph-based representations still disregard the
three-dimensional nature of molecules, possibly missing useful
information by, for example, neglecting chirality. As such, recent
interest has formed around the generation of 3D molecular
structures leading to the proposal of a few methods72−74 and,
hopefully, motivating future works.
An interesting recent trend has been to leverage omics data to

help direct the generation process.105−107 Due to the large
quantities of omics data already available and the information
that it can convey, this strategy has the potential to be extremely
useful. A handful of approaches have already been suggested and
further work along these lines will likely be developed.
The synthetic accessibility of generated compounds, which is

vital for the practical realization of these methods, still poses a
significant hurdle to overcome. Some methods have recently
emerged taking this into consideration,121−124 while it is
expected that future approaches will continue to address this
issue.
With regard to new applications, methods targeting the

biotechnological industry, such as novel artificial flavorings,
dyes, catalysts, or pesticides, could be very relevant.
Furthermore, employing methods leveraging omics data to aid
in metabolic engineering tasks might also be a promising avenue
for future work.
Lastly, some evidence has been reported in favor of using

multiple generative models in parallel to cover different regions
of the chemical space.36 This further motivates new research and
development in this area, as different architectures and methods
could complement each other, learning specific chemical
patterns and enabling a more diverse approach to the
exploration of chemical space.

■ AUTHOR INFORMATION
Corresponding Author

Miguel Rocha − Centre of Biological Engineering, Campus
Gualtar, University of Minho, 4710-057 Braga, Portugal;
orcid.org/0000-0001-8439-8172; Email: mrocha@

di.uminho.pt

Authors
Tiago Sousa − Centre of Biological Engineering, Campus
Gualtar, University of Minho, 4710-057 Braga, Portugal;
orcid.org/0000-0003-4013-7012

João Correia − Centre of Biological Engineering, Campus
Gualtar, University of Minho, 4710-057 Braga, Portugal

Vítor Pereira − Centre of Biological Engineering, Campus
Gualtar, University of Minho, 4710-057 Braga, Portugal

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.0c01496

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This project has received funding from the European Union’s
Horizon 2020 research and innovation programme (Grant
Agreement Number 814408).

■ REFERENCES
(1) Polishchuk, P. G.; Madzhidov, T. I.; Varnek, A. Estimation of the
size of drug-like chemical space based on GDB-17 data. J. Comput.-
Aided Mol. Des. 2013, 27, 675.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Review

https://doi.org/10.1021/acs.jcim.0c01496
J. Chem. Inf. Model. 2021, 61, 5343−5361

5357

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Miguel+Rocha"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8439-8172
https://orcid.org/0000-0001-8439-8172
mailto:mrocha@di.uminho.pt
mailto:mrocha@di.uminho.pt
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tiago+Sousa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4013-7012
https://orcid.org/0000-0003-4013-7012
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joa%CC%83o+Correia"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vi%CC%81tor+Pereira"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01496?ref=pdf
https://doi.org/10.1007/s10822-013-9672-4
https://doi.org/10.1007/s10822-013-9672-4
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.0c01496?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(2) Schneider, G. Automating drug discovery.Nat. Rev. Drug Discovery
2018, 17, 97−113.
(3) DiMasi, J. A.; Grabowski, H. G.; Hansen, R. W. Innovation in the
pharmaceutical industry: New estimates of R&D costs. Journal of Health
Economics 2016, 47, 20−33.
(4) Ruddigkeit, L.; van Deursen, R.; Blum, L. C.; Reymond, J.-L.
Enumeration of 166 Billion Organic Small Molecules in the Chemical
Universe Database GDB-17. J. Chem. Inf. Model. 2012, 52, 2864−2875.
(5)Walters, W. P. Virtual Chemical Libraries: Miniperspective. J. Med.
Chem. 2019, 62, 1116−1124.
(6) Hartenfeller, M.; Zettl, H.; Walter, M.; Rupp, M.; Reisen, F.;
Proschak, E.; Weggen, S.; Stark, H.; Schneider, G. DOGS: reaction-
driven de novo design of bioactive com- pounds. PLoS Comput. Biol.
2012, 8, No. e1002380.
(7) Spiegel, J.; Durrant, J. AutoGrow4: An open-source genetic
algorithm for de novo drug design and lead optimization. J. Cheminf.
2020, 12, 25.
(8) Jensen, J. H. A graph-based genetic algorithm and generative
model/Monte Carlo tree search for the exploration of chemical space.
Chem. Sci. 2019, 10, 3567−3572.
(9) Yoshikawa, N.; Terayama, K.; Sumita, M.; Homma, T.; Oono, K.;
Tsuda, K. Population-based De Novo Molecule Generation, Using
Grammatical Evolution. Chem. Lett. 2018, 47, 1431−1434.
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